
Nanophotonic inverse design with SPINS: Software
architecture and practical considerations

Cite as: Appl. Phys. Rev. 7, 011407 (2020); doi: 10.1063/1.5131263
Submitted: 10 October 2019 . Accepted: 11 February 2020 .
Published Online: 10 March 2020

Logan Su,a) Dries Vercruysse, Jinhie Skarda, Neil V. Sapra, Jan A. Petykiewicz, and Jelena Vučković

AFFILIATIONS

E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA

a)Author to whom correspondence should be addressed: logansu@stanford.edu

ABSTRACT

This paper presents a computational nanophotonic design library for gradient-based optimization called the Stanford Photonic INverse
design Software (SPINS). Borrowing the concept of computational graphs, SPINS is a design framework that emphasizes flexibility and
reproducible results. By factoring the inverse design process into components that can be swapped out for one another, SPINS enables
inverse design practitioners to easily explore different design methodologies. Here, we present the mathematical and architectural details on
how to achieve these goals, using the inverse design of a wavelength demultiplexer as a primary example. Using inverse design effectively
requires understanding the “control knobs” available to the designer, and, to that end, we also discuss practical considerations and heuristics
for effective use of inverse design. In particular, by running inverse design on hundreds of designs of 3D wavelength demultiplexers, this
paper explores the landscape of local minima, which leads to insights on the choice of initial conditions.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5131263

I. INTRODUCTION

Photonics has many applications, ranging from optical intercon-
nects1 to augmented reality (AR)2 to optical neural networks.3 The
wide variety of applications necessitates a wide variety of building
blocks that compose photonic systems. A large body of research is
devoted to optimizing these photonic structures using simple geome-
tries where the physics is well understood. The devices are then further
optimized via parameter sweeps or genetic or particle swarm optimiza-
tion over a small number of degrees of freedom. Though simple, these
design approaches only explore a small fraction of the possible
designs.

Computational nanophotonic design using gradient-based
optimization, also known as inverse design, is a promising method
that provides an efficient mechanism through which to explore the
full space of possible designs. The number of degrees of freedom in
a typical design space is so large that it is not feasible to simulate
even a small fraction of the possible designs. This can be mitigated
by using the gradient (i.e., sensitivity of the loss function with
respect to changes in the permittivity distribution) to guide the
optimization process. Because the gradient can be computed with
only one additional electromagnetic simulation, this adjoint method
is computationally efficient and has been used to demonstrate devi-
ces that have smaller footprints, better efficiencies, and novel
functionalities.4

In this paper, we present the Stanford Photonic INverse design
Software (SPINS),5,6 a computational nanophotonic design framework
for running gradient-based optimization that has been used to opti-
mize devices in several previous works.7–12 SPINS is a design frame-
work, not a design methodology: It is a way to formulate and express
the optimization problem. That is, SPINS is agnostic to a specific opti-
mization procedure or type of nanophotonic problem (e.g.,
waveguide-based, free space photonic elements). Instead, SPINS uses
software building blocks called nodes that are assembled together into
a problem graph. This enables easy experimentation during the design
process as well as a way to customize and extend the functionality of
SPINS. The problem graph can also be saved and restored, a feature
that is invaluable, for example, in reproducing results or in restarting
optimizations.

Using inverse design effectively also requires an understanding of
the “control knobs” available to the designer. To that end, we discuss
practical considerations and heuristics when using inverse design.
These include the design of objective functions and the choice of initial
conditions based on an analysis of the local minima reached by the
optimization process.

The paper outline is as follows. Section II provides a mathemati-
cal overview of inverse design, and Sec. III provides an overview of the
framework and how the inverse design formulation is implemented.
Section IV presents an example of designing wavelength

Appl. Phys. Rev. 7, 011407 (2020); doi: 10.1063/1.5131263 7, 011407-1

Published under license by AIP Publishing

Applied Physics Reviews ARTICLE scitation.org/journal/are

https://doi.org/10.1063/1.5131263
https://doi.org/10.1063/1.5131263
https://doi.org/10.1063/1.5131263
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5131263
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5131263&domain=pdf&date_stamp=2020-03-10
https://orcid.org/0000-0002-4050-7338
mailto:logansu@stanford.edu
https://doi.org/10.1063/1.5131263
https://scitation.org/journal/are


demultiplexers and discusses salient points in the overall design pro-
cess. Finally, Sec. V discusses practical considerations and analyzes key
properties of gradient-based nanophotonic optimization.

II. INVERSE DESIGN FORMULATION OVERVIEW

This section describes the mathematical foundations behind the
inverse design approach used in SPINS. Although the exact form of
the optimization problem varies from device to device, photonic
design problems generally share a common set of features, which are
described below. Note that in this manuscript, all variables represent
finite-dimensional vectors and therefore represent discretized quanti-
ties. More details can be found in Appendix C.

A. General optimization problem

Many photonic design problems can be cast into the following
form:

min
p

fobjðEð�ðpÞÞÞ

subject to p 2 Sfab; (1)

where fobj is the objective function that captures the goal of the optimi-
zation, E is the electric field distribution, � is the permittivity distribu-
tion that is described by a parametrization vector p, and Sfab is the set
of fabricable devices. For example, for the optimization of a waveguide
bend [Fig. 1(a)], fobj is the negative of the transmission efficiency (since
the objective is to be minimized), and Sfab corresponds to all devices
with minimum feature size greater than 100nm. Not all photonic
design problems can be cast into the exact form given by optimization
problem 1, but they generally take on a similar form. For instance, to
optimize for temperature insensitivity, a possible problem is

min
p

fobjðEð�1ðpÞÞÞ þ fobjðEð�2ðpÞÞÞ

subject to p 2 Sfab; (2)

where �1 and �2 correspond to the permittivity distribution at different
temperatures.

B. Parametrization �ðpÞ
In principle, it is possible to optimize the permittivity distribution

directly (i.e., control the value of permittivity distribution in every
point in space). However, because of fabrication constraints, it is often
more convenient to indirectly specify the permittivity distribution via
a parametrization.

A fundamental difficulty in photonic design is that arbitrary per-
mittivity distributions cannot be fabricated. First, devices are usually
composed of a small number of distinct materials, so the permittivity
can only take on certain discrete values. Second, devices are often fab-
ricated with top-down lithography, so the permittivity along the verti-
cal direction must be the same. Last, devices usually have minimum
size feature constraints.

By choosing an appropriate parametrization, these fabrication
constraints can be more naturally imposed. For example, the 1D grat-
ing coupler design parametrization used in12 defines the elements of p
as the distance between grating edges. This way, fabrication constraints
are specified by constraining the minimum distance between neigh-
boring grating edges. For 2D designs, levelset parametrizations are

commonly used in SPINS, which naturally define binary devices
(Appendix A 1 a).

C. Simulation Eð�Þ
The electromagnetic simulation can be considered a function

that accepts a permittivity distribution and outputs the electric fields.
For example, in the frequency domain, the electric field is computed
from the permittivity by inverting Maxwell’s equations,

Input

(a)

Output

2.6 μm

(b)

1

3

2

FIG. 1. (a) Problem setup for a waveguide bend. The outer hatched gray frame rep-
resents the simulation domain (more specifically, the perfectly matched layer
boundaries), the solid gray boxes denote the input and output waveguides, and the
dark gray square represents the design area, the region in which the permittivity
distribution is allowed to vary. The input mode is injected at the location designated
by the thin black rectangle on the left, and the modal overlap with the fundamental
mode is computed at the hatched black rectangle on the bottom waveguide. (b)
The general optimization sequence consists of three sub-optimizations. (1) A ran-
domly generated initial structure with continuous permittivity distribution is optimized
(continuous optimization). (2) The resulting continuous structure is converted into a
discrete one (discretization). (3) The discrete structure is further optimized (discrete
optimization). Fabrication constraints are enforced at this time.

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 7, 011407 (2020); doi: 10.1063/1.5131263 7, 011407-2

Published under license by AIP Publishing

https://scitation.org/journal/are


E ¼ r� 1
l
r�

� �
� x2�ðpÞ

� ��1
ð�ixJÞ; (3)

where J is the input source and x is the angular frequency. In Fig.
1(a), J injects the fundamental mode into the input waveguide. Note
that a time-domain problem (e.g., pulse-shaping) can be formulated in
terms of a frequency-domain problem by taking the Fourier trans-
form. It is also possible to extend the formulation to nonlinear
devices13 and eigenmode problems.14

D. Objective function f ðEÞ
The form of the objective function varies depending on the opti-

mization goal, and consequently, it is one of the important control
knobs for a designer. For example, a possible objective for maximizing
transmission is

fobjðpÞ ¼ �jc†EðpÞj2; (4)

where c†E computes the modal overlap of the electric field E with the
target mode c at the output port of the device. In Fig. 1, this would cor-
respond to measuring the modal overlap with the fundamental mode
at the bottom waveguide. If the goal is to have transmission at a partic-
ular value, a possible objective is

fobjðpÞ ¼ ðt � jc†EðpÞjÞ2; (5)

where t is the target transmission. This can be extended to handle mul-
tiple sub-objectives. For example, an objective for multiple frequency
optimization (e.g., for wavelength demultiplexing or broadband prob-
lems) could be

fobjðpÞ ¼ fobj;1ðE1ð�1ðpÞÞÞ þ fobj;2ðE2ð�2ðpÞÞÞ: (6)

In such cases, the form of the objective function plays a critical role in
determining the trade-off between the sub-objectives. Discussion of
this trade-off and other common objective functions are described in
Appendix B 3.

E. Solving the design problem

Generally, directly optimizing for a discrete device with fabrica-
tion constraints produces poor devices because the landscape is highly
non-convex, and a good initial condition is required. Initializing with
a classically designed device is possible, but this approach limits the
design space. Alternatively, rather than solving the optimization prob-
lem in a single pass, the optimization can be broken down into a series
of sub-optimizations [Fig. 1(b)]. One approach is a continuous relaxa-
tion whereby the permittivity is allowed to vary continuously between
the device and cladding. A discretization operation then converts the
device at the end of this continuous stage into a discrete device for
further optimization.

Possible discretization techniques include thresholding and mini-
mization of the difference between continuous and discrete structures
(also see Appendix B 2). In thresholding, a pixel in the discrete struc-
ture is considered to be 1 if the continuous structure is greater than
0.5, and a pixel is 0 if the continuous structure is less than 0.5. Though
simple to implement, this method usually does not provide the best
results. Instead, discretization in SPINS often involves solving an opti-
mization problem subject to many fabrication constraints,

min
p
jj�discðpÞ � �contjj; (7)

where �cont is the continuous permittivity and �disc is the discrete per-
mittivity. Since this optimization problem does not depend on the
field, it is quick to optimize, though the method with which to solve
the problem is dependent on the choice of parametrization p.8,12

In general, each of the optimization stages can be considered as a
transformation that converts one parametrization into another. Some
transformations (e.g., discrete optimization) preserve the parametriza-
tion type but change the values, whereas other transformations (e.g.,
discretization) actually change the parametrization type. In effect, solv-
ing the design problem involves choosing a sequence of transforma-
tions that starts with a randomized structure and produces a fully
optimized one.

III. FRAMEWORK OVERVIEW

Though the exact formulation of a design problem varies widely
from device to device, most design problems share a similar structure,
requiring some form of parametrization, simulations, and mathemati-
cal functions to construct the objective. There are many fundamental
building blocks that are shared among different design problems, such
as the computation of an overlap of the form jc†Ej. Consequently,
SPINS is structured around small building blocks that can be assem-
bled together to formulate any desired design problem.

SPINS is built around the notion of an optimization plan consist-
ing of two parts. First, fundamental building blocks called nodes are
assembled together to form a problem graph. The problem graph pro-
vides a complete description of the design problem, from the details of
the simulation to the precise form of the objective function (Fig. 2).
Second, there is a sequence of transformations that defines the optimi-
zation strategy. Transformations either modify the values of parame-
trization or convert one form of parametrization into another. These
transformations include continuous and discrete optimization stages
as well as the discretization process. The transformations use the prob-
lem graph to compute any necessary quantities, such as the objective
function value.

The problem graph is merely a description of the problem and
does not contain actual implementation. Consequently, no computa-
tion is performed when setting up the graph. This is similar to static
computational graphs in TensorFlow15 and carries many important
advantages in inverse design,

• The user can easily experiment with different types of objective
functions by assembling simple functions together like building
blocks. Moreover, design blocks created by other users can be
easily shared with others.

• The gradients can be automatically computed via reverse-mode
autodifferentiation,16 obviating the need to manually implement
gradient calculations.

• It provides a record of the exact optimization sequence as well as
the hyperparameters used to run the optimization.
Hyperparameters are often critical in producing good results,
and this provides a mechanism by which to store the exact values
used to produce a particular result. Importantly, during post-
optimization analysis, the values of any node in the graph can be
determined, even if not explicitly saved.

• Optimizations can be resumed from any iteration. This is useful
for resuming long optimizations that were stopped (e.g., due to

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 7, 011407 (2020); doi: 10.1063/1.5131263 7, 011407-3

Published under license by AIP Publishing

https://scitation.org/journal/are


hardware failure), or for experimenting with different optimiza-
tion sequences (e.g., swapping out the discrete optimization or
adding another discrete transformation).

• Optimization problems can be generated in one location and exe-
cuted on a remote server, as the whole problem is specified
through a JSON file and GDS files. Therefore, in principle, the
optimization problem generation does not even require program-
ming knowledge, enabling designers to work independently from
software developers.

• Similarly, optimization problems can be generated at one time
and run later, which is useful for queueing up optimization prob-
lems to run in batches for sweeps.

The typical workflow with SPINS involves (1) setting up the
problem graph, (2) choosing the transformations, and (3) executing
the optimization plan. SPINS is designed to allow users to add custom
nodes and transformations to suit their needs. Depending on the out-
come of the optimization, the designer may opt to experiment with
different objective functions or sequences of transformations, which
are enabled by the mix-and-match capability of SPINS parametriza-
tions, nodes, and transformations.

The outline for a typical problem graph for a nanophotonic
design problem is depicted in Fig. 2(b). The parametrization is the pri-
mary input to the graph. The permittivity function converts the
parametrization into an actual permittivity distribution, which is
then fed to the simulation function. The simulation function outputs
the corresponding electric fields, which are used to feed a subgraph
that produces the objective function value. If there are multiple
sub-objectives, these sub-objectives are combined together to form one

final total objective function. Appendix A discusses the implementa-
tion of each of these components.

IV. WAVELENGTH DEMULTIPLEXER DESIGN
EXAMPLES

In this section, we use SPINS to design wavelength demulti-
plexers in 3D. This is a canonical benchmarking problem for inverse
design because classical designs at these small footprints do not exist,
and randomly choosing a structure results in a non-functioning
device. To illustrate practical concerns that arise during optimization
as well as the importance of flexibility in a design framework, three dif-
ferent demultiplexers are designed: a continuous structure to estimate
the maximum possible performance, a discrete structure that can be
fabricated, and a structure that controls both the amplitude and phase
at the output ports.

A. Simulation space setup

We design a 3D device for the 220nm SOI platform (n¼ 3.5 for
illustration purposes) with a 2.5 um � 2.5 um design area and 400nm
input and output waveguides. The goal is to route 1400nm to the
upper waveguide and 1550nm to the lower waveguide.

Figure 3(a) shows the simulation setup from a top-down view of
the device. The dark gray square represents the design area for the
continuous stage transformations in which the permittivity is allowed
to change. When optimizing a discrete device, the design region indi-
cated by the light gray square surrounding the dark gray square is
used. The discrete stage has an enlarged design area compared to the
continuous transformation so that the discrete optimization can

p

EM Sim.
λ1

EM Sim.
λ2

Obj.
λ1

Obj.
λ2

+

Total Obj.

+

*

ba

c

(a + b) * c

(a) (b)

∈1 ∈2

FIG. 2. Illustrations of the computational graph. Boxed elements correspond to inputs and outputs of the graph, whereas circles correspond to operations. (a) An example of
computational graph that accepts as input three values a, b, and c and computes as output ðaþ bÞ � c. (b) Schematic computational graph corresponding to EM objective
with two different wavelengths. First, the parametrization vector is used to compute permittivity distribution at the two wavelengths (in order to incorporate any material disper-
sion). The EM simulation operation accepts the permittivity distributions and produces the electric field as output, which is then used to compute an objective function for the
particular wavelength (e.g., power at an output port). The sub-objectives are aggregated together (in this case with a sum) to produce the final objective function value.

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 7, 011407 (2020); doi: 10.1063/1.5131263 7, 011407-4

Published under license by AIP Publishing

https://scitation.org/journal/are


ensure a smooth transition between the waveguides outside the design
area to the structure within the design area. Without the enlarged
design region, it is possible for fabrication constraints to be violated at
the boundary between the waveguides and the design area.

The rest of the simulation setup is similar to the setup for a nor-
mal electromagnetic simulation. The light gray rectangles protruding
from the design area indicate the input and output waveguides. These
extend into the yellow region denoting the perfectly matched layer
(PML) boundary condition used in the simulation. The green rectan-
gle indicates the location of the mode source used to inject the funda-
mental mode into the input waveguide, and the blue rectangles denote
the location of the modal overlaps used to compute the power injected
into the output waveguides. The values of these modal overlaps are
used to compute the overall objective function.

B. Objective function

The optimization problem is defined as

min
p;E1;E2

f ðjc†t;1E1j2; 1Þ þ f ðjc†t;2E2j2; 0Þ

þf ðjc†b;2E2j2; 1Þ þ f ðjc†b;1E1j2; 0Þ

subject to r� 1
l
r� E1 � x2

1�ðpÞE1 ¼ �ix1J1;

r� 1
l
r� E2 � x2

2�ðpÞE2 ¼ �ix2J2;

(8)

where xn represent the frequencies at 1400 and 1550nm; En is the
electric field for frequency xn; Jn injects a TFSF source into the input
waveguide for frequency xn; ca;n is the overlap vector for frequency
xn for the top (a¼ t) or bottom (a¼ b) output waveguide, such that
jc†a;nEnj2 is the power going into the fundamental mode of the output
waveguide; and f ðx; yÞ ¼ ðx � yÞ2. The problem graph corresponding
to this objective is shown in Fig. 3(b).

The objective is a sum with four terms, with each term corre-
sponding to a sub-objective. Two terms (s¼ 1) correspond to maxi-
mizing transmission through the top waveguide at 1400nm and
through the bottom waveguide at 1550 nm, and two terms (s¼ 0) cor-
respond to rejection modes (i.e., discourage 1550 nm at the top wave-
guide and 1400nm at the bottom waveguide). Without the rejection
terms, the cross talk could be higher. These four sub-objectives can
compete with one another. For instance, at any given optimization
step, it could be possible to increase transmission at 1400 nm through
the top waveguide but at the cost of higher cross talk at 1550nm
(transmission of 1550nm through the same waveguide).
Consequently, it is important to balance out the objectives as desired
through the construction of the objective function. In this particular
case, f(x, y) squares the difference in order to prefer devices that are
more balanced (i.e., a device with equal transmission at 1400 and
1550nm is preferable to one where there is high transmission at
1400nm but low transmission at 1550nm).

One may also want to include other sub-objectives. For example,
an additional term could be included to minimize backreflection at the
input waveguide. One common extension is to optimize for broad-
band wavelength dependence, which can be achieved in this case by
simulating at additional wavelengths near 1400 and 1550nm (see
Appendix B 3 c). Moreover, broadband behavior can be used as a
crude proxy for robustness as well. Since a small perturbation in either

refractive index or structure results in a spectral shift, broadband opti-
mization can make the structure more robust to temperature and fab-
rication errors.

C. Device A1: Continuous device for estimating
performance

Before designing a fabricable device, it is helpful to check that the
given design area is large enough to achieve desired performance tar-
gets. To do so, we use a direct parametrization where the permittivity
at every pixel of the device area can be controlled independently and
can take on a continuous value. Because the design space for this prob-
lem is much larger than the design space of fabricable devices, the out-
come of this optimization provides an estimate of the upper bound on
the performance of a device with this design area.

Figure 4(c) shows the final device structure for this optimization.
The device has a transmission of 95% at both 1400 and 1550nm with
over 19 dB of cross talk suppression. The device was optimized for 100
iterations, and the optimization trajectory of the device is shown in
Fig. 4(a). The objective function always decreases because the opti-
mizer used employs a line search in which a step is taken only if the
objective function decreases. However, the amount of improvement
drops dramatically after tens of iterations. In fact, the optimization has
mostly converged by iteration 30, with the remaining 70 iterations
improving the transmission by around 5%. Consequently, when used
to estimate device performance, it often suffices to optimize for only
20–30 iterations. If the desired performance targets are too far from
being met after a few tens of iterations, then a larger design area should
be probably be considered.

In total, the optimization took roughly 3.5 h running on a
machine with 4 Titan Black GPUs and 2 CPUs with 64 GB RAM
available. Each simulation used 2 GPUs so that simulations across
both wavelengths could occur simultaneously. Since each optimization
step requires, at a minimum, one forward and one adjoint simulation,
this amounts to roughly 200 simulations per wavelength, with each
simulation taking approximately a minute. Note that although the
machine had 64 GB RAM available, less than 4 GB RAM was used.
The largest RAM usage comes from storing the field quantities, such
as electric field, sources, and the permittivity distribution (stored
as double-precision complex number arrays, which each take around
40 MB).

D. Device A2: Fabricable discrete device

To optimize a fabrication-constrained device, the standard con-
tinuous relaxation approach discussed in Sec. II E was used. This
involves adding transformations to handle discretization and the dis-
crete optimization. In addition, a cubic interpolation parametrization
is used instead of a direct parametrization in the continuous optimiza-
tion stage in order to ensure better discretization for the continuous
structure.8 During the discrete optimization stage, a constraint was
added to ensure that the discrete transformation produces devices
with feature sizes greater than 100 nm and a radius of curvature
greater than 50nm.

The optimization trajectory is plotted in Fig. 5(a). The dotted
lines indicate different optimization transformations. In this case, the
continuous stage actually consists of three optimization transforma-
tions, whereas the discrete stage consists of a single transformation. In

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 7, 011407 (2020); doi: 10.1063/1.5131263 7, 011407-5

Published under license by AIP Publishing

https://scitation.org/journal/are


the continuous stage, each of the transformations biases the structure
to become a little more discrete. As before, in the continuous transfor-
mations, the objective function always decreases except at the transi-
tion between transformations, at which point a parameter is adjusted
to make the structure more discrete.8 After the three continuous trans-
formations, the discretization transformation changes the structure to
be fully discrete, resulting in another increase in objective function. In
the discrete transformation, the objective value decreases and increases

because the fabrication constraint penalty is gradually increased
throughout the transformation. Eventually, the optimization recovers
the performance achieved in continuous stages, indicating that discre-
tization and discrete optimizations worked sufficiently well.

Note that the continuous stage performs worse than the continu-
ous stage achieved in Sec. IVC. The reasons are twofold. First, the
cubic interpolation parametrization factors in the desired feature are
sized to avoid small features and are therefore more restrictive than

1400 nm

1550 nm

Input

2.5 μm

(a)

sum.4

power.1

sum.0

power.0

abs.0

overlap.0

fdfd_simulation.0

overlap.1

simulation_space.0

fdfd_simulation.1

source.waveguide_mode.0

overlap.waveguide_mode.0

overlap.2

constant.0

power.3

sum.1

power.2

abs.1

overlap.waveguide_mode.1

overlap.3

constant.1

power.5

sum.2

power.4

abs.2

constant.2

power.7

sum.3

power.6

abs.3

constant.3

(b)

FIG. 3. (a) Problem setup for the wavelength demultiplexer. The goal is route to 1400 nm through the upper waveguide and 1550 nm through the bottom waveguide. As with Fig.
1(b), the outer hatched gray region indicates the outer part of the simulation region, and the solid light gray rectangles denote the input and output waveguides. The design area
for the continuous and discrete optimizations are indicated by the black and dark gray squares, respectively. The input source is injected at the black rectangle on the left, and the
blacked hatched regions indicate where the overlap integral for the output waveguides are computed. (b) Problem graph for objective defined in Sec. IV B. Each ellipse represents
a single problem graph node, and the arrows represent the dependencies among the nodes. The nodes at the top of the graph define the simulation (simulation_space.0, source.
waveguide_mode.0 and fdfd_simulation.X). The output of the simulation nodes (fdfd_simulation.X) are electric field distributions, which are used to compute the power emitted into
the output waveguides. The transmission and cross talk powers for the two wavelengths are then combined together into a single objective function.

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 7, 011407 (2020); doi: 10.1063/1.5131263 7, 011407-6

Published under license by AIP Publishing

https://scitation.org/journal/are


0

0.2

0.4

0.6

Tr
an

sm
is

si
on

O
bj

ec
tiv

e 
F

un
ct

io
n

O
ut

pu
t P

ha
se

 (
ra

d)

0.8

1.0
(a) (b) (c)

20 40

Optimization Iteration

60 80 0
–1.00

–0.75

–0.50

–0.25

0.00

0.25

0.50

0.75

1.00

20 40

Optimization Iteration

60 80

10–2

10–1

100

1400

1550

1400

1550

FIG. 4. Device A1 is a 3D wavelength demultiplexer with a continuous permittivity distribution. This optimization is used to estimate the performance of a demultiplexer with
this particular footprint. (a) Transmission (solid) and objective value (dotted) as a function of optimization iteration. (b) Phase of the output waveguide mode as a function of
optimization iteration. Because phase is not taken into account in the objective function, the phase of the output modes vary throughout the optimization process. (c) Final
device design. The grayscale design denotes the continuous permittivity distribution where black indicates silicon and white indicates oxide. Intermediate values represent inter-
mediate permittivity. In this optimization, the device is parametrized by 40 nm x 40 nm pixels, leading to the pixelated design.

(d)

(a)
continuous opt. discrete opt.

1550 nm1400 nm

(b)

(c)

0
0.0

0.2

0.4

T
ra

ns
m

is
si

on

O
bj

ec
tiv

e 
F

un
ct

io
n

0.6

0.8

20 40 60 80 100
Optimization Iteration

120 140 160

1400
1550

180

10–2

10–1

100

FIG. 5. Device A2 is the optimized, fabricable wavelength demultiplexer. Unlike with Device A1, this device undergoes both continuous and discrete optimization stages where
fabrication constraints are applied. (a) Transmission (solid) and objective value (dotted) as a function of optimization iteration. The vertical dotted lines indicate the start of a
new transformation. Discretization occurs in between the continuous and discrete optimization stages. (b) Final device design. The device is parametrized by a levelset func-
tion, so the boundaries of the device are known exactly, unlike in the direct parametrization case (Device A1). (c) Electric field intensity of the optimized device at 1400 nm. (d)
Electric field intensity of the optimized device at 1550 nm.

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 7, 011407 (2020); doi: 10.1063/1.5131263 7, 011407-7

Published under license by AIP Publishing

https://scitation.org/journal/are


the direct parametrization. Second, the continuous optimization was
terminated before reaching convergence. As a result, at some itera-
tions, even the discrete optimization achieved a better performance
than the continuous optimization.

Figure 5(b) shows the final device design, and Figs. 5(c) and 5(d)
show the electric field distributions at 1400 and 1550nm, respectively.
The device has a transmission of 84% at 1400nm and 90% at 1550nm
with cross talk suppression of over 20 dB. Overall the device took
roughly 11 h to optimize running with 2 K80 GPUs and 2 CPUs with
7.5 GB RAM, with three continuous stages taking roughly 3.6 h total
(a little over an hour per sub-optimization). In this case, each GPU
was responsible for simulations at one particular wavelength. The
required RAM for the continuous and discrete stages are roughly equal
to each other (around 3 GB). However, during the discrete stage, we
did not explicitly release any memory used by the continuous stage,
and consequently, the actual RAM usage is roughly double in the dis-
crete stage.

E. Device B: Phase control

In some applications, the phase of the output is also important.
To control the phase, the optimization problem is slightly modified to

min
p;E1;E2

jc†t;1E1 � eih1 j2 þ f ðjc†t;2E2j2; 0Þ

þjc†b;2E2 � eih2 j2 þ f ðjc†b;1E1j2; 0Þ

subject to r� 1
l
r� E1 � x2

1�ðpÞE1 ¼ �ix1J1;

r� 1
l
r� E2 � x2

2�ðpÞE2 ¼ �ix2J2;

(9)

where h1 and h2 are the desired phases. In this objective function, the
complex overlap value is directly compared against a complex coeffi-
cient, so the objective function will be low only if the modal overlap
has the right amplitude and phase.

The parametrization and optimization of this device proceeds
similarly to Device 1a (Sec. IVC) (target phases are set to zero). The
final device design is shown in Fig. 6(c), and the device achieves 91%
transmission at 1400 nm and 90% transmission at 1550nm with
around 19dB of cross talk suppression. The optimization trajectory is
plotted in Fig. 6(a), and the trajectory of the phase at the output mode
is plotted in Fig. 6(b). Without the phase objective, the phases of the
output modes differ by nearly 1.5 rad [Fig. 4(b)], but with the phase
objective, the phases at the output modes both become nearly zero.
On the other hand, because of this additional constraint, the device
transmission is around 5% lower. If this performance loss were unac-
ceptable, then the design area could be increased. Because this optimi-
zation requires the same number of simulations as in Sec. IVC, the
device also took around 3.5 h to optimize (on the same hardware), but
as before, in a practical setting, the performance of the device can be
estimated after running only 20–30 iterations.

V. PRACTICAL CONSIDERATIONS

This section highlights some of the most important consider-
ations when using gradient-based nanophotonic optimization.
Addition considerations and heuristics are discussed in Appendix B.

A. Local minima and initialization

Because a local gradient-based optimization algorithm is used,
the optimized devices converge to a local minimum with respect to the
design parameters. As one might expect, there are many possible local
minima. Although converging to the global minimum would be ideal,
the non-convexity of many electromagnetic design problems means
that computationally tractable methods for finding the global mini-
mum do not exist. Fortunately, for many design problems, it suffices
to find a device that meets the design requirements. As will be demon-
strated, when using the continuous relaxation approach presented in
Sec. II E, the local minima encountered have roughly the same

0

0.2

0.0

0.4

0.6

Tr
an

sm
is

si
on

O
bj

ec
tiv

e 
F

un
ct

io
n

O
ut

pu
t P

ha
se

 (
ra

d)

0.8

1.0

(a) (b) (c)

20 40

Optimization Iteration

60 80 0
–1.00

–0.75

–0.50

–0.25

0.00

0.25

0.50

0.75

1.00

20 40

Optimization Iteration

60 80

10–2

10–1

100

1400

1550

1400

1550

FIG. 6. Device B is a 3D wavelength demultiplexer with a continuous distribution and phase control at the outputs. This is the same as Device A1 except that the output phase
of the mode at the overlap locations should be zero at both wavelengths. (a) Transmission (solid) and objective value (dotted) as a function of optimization iteration. (b) Phase
of the output waveguide mode as a function of optimization iteration. Because of the phase control objective, the phase quickly becomes zero at both wavelengths and remains
at zero for the duration of the optimization. (c) Final device design. The grayscale design denotes the continuous permittivity distribution where black indicates silicon and white
indicates oxide. Intermediate values represent intermediate permittivity. In this optimization, the device is parametrized by 40 nm x 40 nm pixels, leading to the pixelated
design.

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 7, 011407 (2020); doi: 10.1063/1.5131263 7, 011407-8

Published under license by AIP Publishing

https://scitation.org/journal/are


performance, so running an optimization several times will often
provide a rough estimate of the maximum possible performance of a
device.

In particular, we revisit the problem of wavelength-
demultiplexing between 1400 and 1550nm presented in Sec. IV and
analyze the local minima encountered by repeating the exact same
optimization with random initial conditions (Appendix D). The distri-
bution of the objective function values and the transmission at 1400
and 1550nm are shown in Figs. 7(a) and 7(b). The objective function
distribution demonstrates that local minima encountered have gener-
ally similar performances despite having vastly different initial condi-
tions. In particular, most devices have transmission efficiencies
between 80% and 90% at both 1400 and 1550nm. Considering that a
continuous permittivity device achieves around 95% efficiency (Sec.
IVC), this demonstrates that most of these local minima have decent
performances. In fact, only one device has significantly worse perfor-
mance than the others with around 60% transmission at both 1400
and 1550nm. Although we are presenting data for the discrete struc-
tures, the data for the continuous structures are similar (Appendix D).

Figure 8 shows a selection of local minima structures. The min-
ima are organized using spectral embedding17 to plot structures in a
way that clusters similar structures together (see supplementary mate-
rial). Therefore, nearby points in the 2D plot correspond to structures
that resemble each other. The “branches” of the embedding suggest
roughly four classes of local minima. First, there are structures that are
essentially silicon blocks with various holes (Boxes 5 and 6). Within
these structures, the electric field spreads across the entire device, sug-
gesting that multi-path interference contributes to device performance.
Second, there are two classes of splitter-like structures (Boxes 1 and 2).
In these structures, the electric field is mostly constrained to one of the
two paths, and the structures themselves resemble miniature Bragg
mirrors that reflect the unwanted wavelength. Interestingly, these two
classes differ essentially in the relative placement of the “gratings”
[Figs. 8(d)–8(f)], yet despite this similarity, as can be seen by Fig. 8(a),

one class clearly outperforms the other. Third, there is a class of struc-
tures that resembles the “splitter-grating” structures, but the paths are
not quite as separated (Box 3). This class of devices seems to be the
best-performing. Finally, the devices in the center of the plot tend to
resemble and behave as a mixture of these classes (Box 4).

There is a strong correlation between the mean permittivity of
the initial structure and the mean permittivity of the final structure, as
shown in Fig. 7(c). This fact can be used to bias structures toward
more silicon or more cladding if it is expected that one regime will per-
form better than another. In this case, Fig. 8 clearly shows that the
mean pixel value strongly influences the class of the optimized device,
and thus sweeping over the initial mean pixel value is an effective strat-
egy for exploring the types of local minima that can be reached.
Additionally, notice that the mean pixel value of the final structure
always lies roughly between 0.2 and 0.8, regardless of the initial condi-
tion, which spans the full range. This arises from the fact that a device
with a mean value close to 0 is mostly silica, and a device with a mean
value close to 1 is mostly silicon. In both cases, the device performance
would be poor, and hence the optimization steers the mean pixel value
to within this range.

Even though mean initial pixel value strongly influences the ulti-
mate design, Fig. 8 demonstrates the value of adding noise and varia-
tions to the initial condition. Even within the same class, performance
can have significant variations. This suggests that small variations in
the initial condition can lead to local variations in the final structure
that affects performance. Consequently, to generate a variety of struc-
tures of a certain type, a little bit of Gaussian noise can be added to
create slightly different initial conditions. After optimizing each of the
devices, the most appropriate device can then be selected from the
final structures.

B. Device performance bounds

Performance of a device is usually affected by fabrication con-
straints and device design area. In general, increasing the degrees of

10–3
0

20

40

60

80

100

(a) (b) (c)

10–2

Objective Function Value

N
um

be
r 

of
 O

pt
im

iz
at

io
ns

Tr
an

sm
is

si
on

 a
t 1

55
0 

nm

M
ea

n 
pi

xe
l v

al
ue

 (
fin

al
)

10–1 0.6 0.0
0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.7 0.8

Transmission at 1400 nm Mean pixel value (initial)

0.9 1.0

FIG. 7. Study of the local minima encountered by our optimization methodology for the 3D wavelength demultiplexing problem. The optimization is run 297 times with random
initial conditions. Although these plots show the result for structures at the end of the discrete stage, the results are similar for the structures at the end of the continuous stage.
(a) Distribution of the objective function values of 297 local minima. (b) The designs show a strong correlation between performance at 1400 and 1550 nm because of the form
of the objective function (see Sec. IV B). Moreover, the distribution is concentrated around 85% transmission, indicating that most of the local minima are well-performing. (c)
Plot of the mean pixel value of the initial condition (in continuous) vs the mean pixel value for the final structure. There is a strong correlation between the starting pixel value
and the final value.

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 7, 011407 (2020); doi: 10.1063/1.5131263 7, 011407-9

Published under license by AIP Publishing

https://scitation.org/journal/are


freedom in an optimization improves device performance. Figure 9
shows how performance is affected for 2D simulations of a wavelength
demultiplexer. As the minimum feature size approaches zero, the per-
formance should approach the continuous distribution device, since
the continuous distributions can be realized by using deep

subwavelength features, which, in an effective index approximation,
yields the same permittivity. As the feature size becomes larger, worst-
performing devices as well as a larger variation in device performance
is observed. Likewise, larger design areas result in better performing
devices as well as a reduction in the variation in device performance.

1

4

3

6

2

5

1

4

3

6

2

5

(c)

u1

u1

u 2
u 2

3 6

2 5

41
(a)

(b)

(f)(e)(d)

–0.2 0.0 0.2 0.4
–0.6

–0.4

–0.2

0.0

0.2

0.4

0.6

–0.2 0.0 0.2 0.4

Transmission

(0.9,1.0)

Mean Pixel

0 1

(0.85,0.9)
(0.8,0.85)
(0.75,0.8)
(0.0,0.75)

–0.6

–0.4

–0.2

0.0

0.2

0.4

0.6

FIG. 8. Spectral embedding of the final structures of the optimizations from Fig. 7. In a spectral embedding, nearby points represent structures that are visually similar. (a)
Spectral embedding colored by the transmission values at 1550 nm. u1 and u2 correspond to the values of the first and second embedding vector. (b) Same spectral embed-
ding as in (a) but colored by the mean pixel value of the initial condition. (c) A sample collection of these structures in the spectral embedding. Each group of three structures
correspond to the three closest structures to the region boxed by the corresponding number in the spectral embedding plots. For each group, the left column shows the initial
condition, the middle column shows the final structure, and the right column shows the electric field distribution at 1550 nm. (d) Average of 8 structures near Box 1. (e)
Average of 8 structures near Box 2. (f) Figures 8(e) and 8(f) overlaid on top of each other. We clearly see that the devices near Box 1 are the “complement” of the devices
near Box 2 in the grating region.

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 7, 011407 (2020); doi: 10.1063/1.5131263 7, 011407-10

Published under license by AIP Publishing

https://scitation.org/journal/are


As a consequence of performance variation, when working with large
feature sizes and small design areas, it is important to run more
optimizations.

As illustrated in Sec. IVC, instead of performing full optimiza-
tions to estimate the appropriate design area to use, a simple way is to
run continuous stage optimization several times for a small number of
iterations. This method, however, cannot be used to estimate the per-
formance with a particular feature size. To do so, similar to Sec. IVD,
continuous optimizations using the cubic interpolation parametriza-
tion can be run instead.

Sometimes it is not clear that it is physically possible to achieve
the desired behavior in a given design region. To date, rigorously
bounding performance of devices is only possible in very limited cases
and is not necessarily tight.18,19 For a rough estimate of an upper
bound, one can simply optimize the device without any fabrication
constraints, including the top-down lithographic constraint. In other
words, the permittivity distribution in the entire volume can be modi-
fied and set to intermediate permittivities. This method can also help
suggest the ideal fabrication methods required.12

VI. CONCLUSION

SPINS enables a flexible nanophotonic design platform built using
small building blocks to create an overall optimization plan. SPINS is a
design framework, not a methodology. It is a way to structure nanopho-
tonic design problems to make it easy to extend and experiment. By rely-
ing on backpropagation, gradients are computed automatically, enabling
designers to quickly test different objectives. By explicitly laying out
dependencies, SPINS can automatically record all the hyperparameters
used to define the problem, enabling optimizations to be restarted from
any point. Additionally, with explicit dependencies laid out, SPINS opens
up the future possibility of optimizing the computational graph itself to
maximize performance on the underlying hardware.

As with any complex tool, using inverse design effectively
requires understanding the control knobs available to the designer. To
that end, the design of wavelength demultiplexers was extensively

studied in order to illustrate the practical considerations and heuristics
required in using inverse design. These include the choice of objective
function, parametrization, and initial condition. In particular, an
in-depth analysis of the local minima encountered by the design
algorithm provided heuristics for choosing the initial condition.
Appendix B includes further guidance on managing electromagnetic
simulations, handling discretization, and choosing an appropriate
optimizer. By designing a framework with an eye toward these consid-
erations, SPINS aims to enable designers and researchers alike to be
more effective in using inverse design.

ACKNOWLEDGMENTS

We thank Geun Ho Ahn for helping review the manuscript and
Rahul Trivedi for helping with implementation of the framework. D.V.
acknowledges funding from FWO and European Union’s Horizon
2020 research and innovation program under the Marie Sklodowska-
Curie Grant Agreement No. 665501. J.S. acknowledges the National
Science Foundation Graduate Research Fellowship under Grant No.
DGE-165618. We acknowledge funding from the Gordon and Betty
Moore Foundation, and we thank Google for providing computational
resources on the Google Cloud Platform. N.V.S. acknowledges funding
from the The Gordon and Betty Moore Foundation (GBMF4744). We
thank the Air Force Office of Scientific Research and program director
Dr. Gernot Pomrenke for supporting our work on photonics inverse
design, through Grant Nos. FA9550-09-1-0704 and FA9550-17-1-0002.

All authors receive royalties from the licensed version of SPINS.

APPENDIX A: FRAMEWORK DETAILS

This appendix explains the details of the framework. The sub-
sections titled “Implementation Details” contain deeper implemen-
tation details that may be skipped without a loss of understanding.

1. Parametrization, selection matrix, and permittivity
distribution

As discussed in Sec. II B, it is usually beneficial to describe the per-
mittivity distribution via a parametrization that better captures the true
degrees of freedom in the design region. For many devices, the top-
down lithographic constraint means that a 2D image is sufficient to
describe the full 3D permittivity distribution. This motivates the intro-
duction of a selection matrix defined through the equation

�ðpÞ ¼ �bg þ ShðpÞ; (A1)

where � is the permittivity distribution, �bg is a constant permittivity
background, and h ranges from 0 to 1. Often, hðpÞ represents a 2D
slice of the permittivity distribution, and therefore the dimensions of h
are usually much less than the dimensions of �. However, there is not
a loss of generality as S can always be taken to be the identity matrix.

Defining the selection matrix has several additional advan-
tages. First, the selection matrix can capture any additional equality
constraints on the permittivity distribution, such as structure sym-
metry and periodicity. Second, the selection matrix is scaled so that
h is normalized between 0 and 1. This normalization allows para-
metrizations to be agnostic to the specific device materials and
hence makes parametrizations more general and flexible. Last, the
selection matrix conveniently handles the details of permittivity
averaging on the simulation grid (Appendix A 2 a).

2

0.4

0.5

0.6

0.7

Tr
an

sm
is

si
on

 a
t 1

55
0 

nm

0.8

0.9

1.0

3 4 5 6
Design area (μm2)

Performance, design area, and fabrication constraints

7 8 9

80
120
160

FIG. 9. Performance of a simulated device (wavelength demultiplexer in 2D) as a
function of design area. The different colors correspond to different feature size
constraints. As the design area increases and the feature sizes decreases, the
performance of the device increases. Choosing an appropriate design area is thus
critical to achieving desired performance. The data are taken from.8

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 7, 011407 (2020); doi: 10.1063/1.5131263 7, 011407-11

Published under license by AIP Publishing

https://scitation.org/journal/are


As a consequence of this definition, the parametrization is tech-
nically a function that maps a parametrization vector p into h. As
mentioned in Sec. II B, there are many approaches to designing para-
metrizations. The simplest parametrization is the direct parametriza-
tion that assigns hðpÞ ¼ p. Though this may not be ideal for
imposing fabrication constraints, it is a useful parametrization for
determining the required device area (see Sec. VB). Examples of other
possible parametrizations include one that defines a structure based
on the boundary of a device20 and one that defines the structure
through a set of rectangles that have different positions and sizes.21 In
general, parametrizations should have large degrees of freedom in
order to not unnecessarily restrict the design space. Note that for low-
dimensional parametrizations, Bayesian optimization and even brute
force parameter sweeps may be a better choice than inverse design.22

a. Levelsets

For lithographically defined devices in discrete optimization,
levelset parametrizations are convenient because they always define
a discrete structure. In the levelset parametrization, a binary permit-
tivity distribution is defined via a levelset function. Whenever the
function is above zero, the permittivity has one value, and whenever
the function is below zero, the permittivity has another value. In
other words, the contour of the device is defined by where the func-
tion crosses zero [Fig. 10(b)].

The advantage of levelsets over the direct parametrization is
twofold. First, binary devices need not correspond to binary pixels
[Fig. 10(a)], so simply enforcing that individual pixels be binary is
actually over-constraining the design space. Second, defining differ-
entiable fabrication constraints such as minimum feature size is
challenging with the direct parametrization, whereas this is more
natural for levelsets.8

b. Implementation details

Note that the selection matrix defined this way can handle
arbitrarily shaped polygons. For example, this can be used to ensure
a gap within the design region where there is no structure.10

Consequently, as the selection matrix can be complicated to specify
by hand, SPINS generates the selection using foreground and

background permittivity distributions. The foreground distribution
corresponds to the permittivity when h is all 1s whereas the back-
ground distribution corresponds to the permittivity when h is all 0s.
The selection matrix can then be generated in two steps. First, a
foreground and background permittivity distribution are subtracted
to obtain a mask indicating where the permittivity is permitted to
change (i.e., anywhere that is non-zero). Based on this mask, a uni-
form selection matrix is constructed by sampling twice as finely as
the Yee grid over the design area. The permittivity values on the
Yee grid are then determined through appropriate averaging over
permittivity values defined on this finer grid. Second, this uniform
selection matrix is weighted (i.e., multiplied element-wise) by this
mask. Last, any symmetry conditions are applied.

2. Simulation

From the perspective of the computational graph, the simula-
tion node accepts the permittivity distribution and produces the
corresponding fields. However, other quantities, including sources
and boundary conditions, must also be specified. In SPINS, sources
and the simulation space, which is an object that describes both the
simulation region and boundary conditions, are themselves prob-
lem graph nodes. This way, the actual simulation node is focused
solely on running the simulation and is agnostic to specific sources
or simulation spaces.

An appropriate simulation method should be chosen for the
simulation node because optimization time is dominated by the
simulation time. For example, for waveguide-based devices where
performance only matters at a few wavelengths, it is generally faster
to use the finite-difference frequency-domain (FDFD) method over
the finite-difference time-domain (FDTD) method. However, for
devices requiring optimization over a broad spectrum of wave-
lengths, FDTD may be more appropriate. For devices with periodic
boundary conditions, such as in metasurface design, rigorous cou-
pled wave analysis (RCWA) may be faster. In this manuscript, we
focus on FDFD because that is the only implemented solver in
SPINS so far. However, SPINS as a framework is agnostic to the
exact simulation method used.

(a) (b) (c)

FIG. 10. [(a) and (b)] When the device is perfectly aligned to the grid (a), then binary pixels may be possible, but when the same device is misaligned (b), the binary device
results in non-binary pixels. (c) A binary device is represented by a levelset function using the following rule: When the levelset function is above zero, one material is used,
and when the levelset function is below zero, another material is used. In other words, the zero-contour of the levelset function forms the contour of the device. Notice that by
construction, the levelset function always defines a binary device.

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 7, 011407 (2020); doi: 10.1063/1.5131263 7, 011407-12

Published under license by AIP Publishing

https://scitation.org/journal/are


a. Implementation details

SPINS maintains its own implementation of the FDFD algo-
rithm, including its own mode solvers. This is necessary as accurate
implementation of adjoint calculations require the ability to pre-
cisely specify the problem to the solver, which potentially requires
arbitrary specification of sources. Radiation boundary conditions
are handled using SC-PMLs.23

In general, 2D simulation can be treated as a special case of a
3D simulation with perfect translation symmetry along one axis.
This is implemented as an axis with exactly one FDFD cell and
periodic boundary conditions. Such an implementation obviates the
need to special case code depending on the dimensionality of the
simulation at the cost of some unnecessary memory usage for 2D
simulations. However, different types of matrix solvers are used
depending on the dimensionality because of the different memory
requirements.

For 2D simulations, direct matrix inversion is usually possible and
empirically observed to be faster than iterative methods. Moreover,
since the solve time for 2D simulations is fairly quick, SPINS by default
runs 2D simulations directly on the CPU. This operation can be done
directly on CPUs using standard linear algebra libraries.

For 3D simulations, inverting the Maxwell operator directly
becomes computationally intractable from both a time and memory
standpoint. As a consequence, an iterative solver is used instead in
which only matrix-vector products are required. When SC-PMLs
are applied with periodic boundary conditions, a symmetrizer23,24

can be applied in order to use COCG.25 Note that with PMLs and
the symmetrizer, the Maxwell operator is complex symmetric rather
than Hermitian, and therefore many convergence guarantees associ-
ated with numerical methods do not apply. Nevertheless, from
Ref. 26 we see that COCG typically fairs well, though the introduc-
tion of Bloch boundary conditions requires a non-symmetric solver
(e.g., BiCG-STAB).

Simulation time is the main bottleneck in electromagnetic
optimization. Consequently, SPINS uses a multi-GPU implementa-
tion of Maxwell equations. To use multiple GPUs, the simulation
region is sliced along one simulation axis, and then each region is
assigned to one GPU. However, the number of GPUs that can exist
on a system is limited. Note that using GPUs located physically on
different motherboards is undesirable because GPUs must share
information on every iteration. However, such systems are still use-
ful for optimizations that require multiple independent simulations
(e.g., for multiple wavelengths).

3. Objectives and function nodes

The objective function is described by a set of generic function
nodes. Function nodes accept one or more input arguments and
generally produce a single output. Functions also can compute the
gradient with respect to any of its inputs. These function nodes
range from simple operations, such as addition and exponentiation,
to more complicated nodes, such as log-sum-exp. Generally speak-
ing, simple nodes are preferred as they allow for more flexible com-
posability. However, in some cases, complicated operations are
implemented as a single node in order to optimize the performance.
For example, log-sum-exp is a single node because a naive imple-
mentation could easily result in overflow/underflow errors.

Likewise, the FDFD simulation node could technically be broken
down into smaller operations, but this would be at the cost of oper-
ation speed.

4. Transformations

The optimization is executed through a series of transforma-
tions. In the most general sense, a transformation is simply an oper-
ation that affects the state of optimization. Transformations can be
complex operations such as finding the parametrization that mini-
mizes an objective function or smaller operations such as perform-
ing thresholding on a structure. In general, the full optimization in
SPINS consists of several sub-optimizations, each of which is imple-
mented as a transformation. Note that the continuous and discrete
optimization stages described in Sec. II E may actually consist of
several transformations. For example, the continuous stage may
consist of multiple transformations that act on structures that
become increasingly more discrete in nature.8 The use of transfor-
mations enables different parametrizations and optimization stages
to be easily swapped in and out for one another.

Many transformations accept an optimizer as an argument. An
optimizer implements a specific optimization method to solve a
generic (i.e., unrelated to electromagnetics) problem. SPINS defines
a lightweight interface for optimizers so that optimizers from differ-
ent existing third-party implementations can be used. For example,
SPINS users commonly rely on the SciPy optimizer, which wraps
the optimization functions implemented in SciPy. Higher-order
optimizers (i.e., those that rely on other optimizers) can also be
implemented. For instance, SPINS provides an optimizer to solve
constrained optimization problems using unconstrained optimizers
through the augmented Lagrangian formalism.

5. Executing the optimization plan

To actually perform the optimization, the transformations are
executed in order, one after another. During the execution of a
transformation, the transformation will reference nodes in the
graph, such as the node representing the objective function.
Whenever this happens, that node will be materialized into a
Python object through the workspace. In other words, the work-
space accepts a node and returns an object that can be used to per-
form actual calculations. Since the problem graph contains
information about all the dependencies associated with a given
node, the workspace will materialize only the nodes necessary, thus
avoiding any unnecessary computations.

Because there is a one-to-one mapping between a problem
graph node and a Python object, a computational graph that mir-
rors the function nodes in the problem graph can be constructed.
This computational graph is used to both evaluate functions and
compute their gradients. Because the computational graph contains
all the explicit dependencies between operations, the computations
can be automatically parallelized. In practice, the most time-
consuming operation is the electromagnetic simulations. Therefore,
the electromagnetic simulations are executed in parallel as much as
possible, whereas the remaining computations are performed
serially.

The gradient is computed using reverse-mode autodifferentia-
tion, also commonly known as backpropagation, which is an

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 7, 011407 (2020); doi: 10.1063/1.5131263 7, 011407-13

Published under license by AIP Publishing

https://scitation.org/journal/are


efficient method to compute the gradient of a function with few
outputs (in this case, one) and many inputs (dimensionality of the
parametrization). Backpropagation through the electromagnetic
simulation is also often referred to as the adjoint method or adjoint
simulation27 (also see Appendix C). The special name arises from
the fact that the computation involves another electromagnetic sim-
ulation with the same permittivity but a different source.

a. Implementation details

From an implementation perspective, SPINS currently chooses
to implement its own backpropagation for two reasons. First, back-
propagation through complex-valued functions is required and
must be handled appropriately, but many existing libraries do not
fully support or have proper complex-valued backpropagation.
Second, the backpropagation code must be able to properly handle
parallelization of electromagnetic simulations.

When a gradient is requested, the computational graph nodes
involved are identified by running a breadth-first-search on the
transposed computational graph. The forward pass is performed by
traversing this subgraph of relevant nodes in topologically sorted
order. Nodes that require a lot of computation (e.g., simulation
nodes) are grouped together and performed in parallel, whereas the
rest of the computation is performed serially. In the backward pass,
the gradient is dynamically computed for each iteration by travers-
ing the computational nodes in reverse order (i.e., topological order
of the transposed graph). Similar to PyTorch,28 we implement cach-
ing in the simulation nodes to avoid redundantly computing the
forward simulation again during backpropagation.

6. Monitoring and logging

One advantage of using a graph is that monitoring and logging
become straightforward. Monitors are objects that capture the out-
put of a particular node in the computational graph and save the
data into log files. This enables probing any value used during the
optimization. For example, the electric field values can be saved by
probing the simulation node, and any sub-objectives can be saved
by probing the corresponding function nodes. Additional nodes
that are not used in the optimization can be added and monitored
to provide more information. For instance, a mode monitor could
be added at the input port to monitor backreflection even if the
objective function does not depend on backreflection.

SPINS enforces a standard logging format that stores the full
state of the optimization at any given time. In this way, post-
optimization analysis tools can be shared. Moreover, since the
optimization plan is an exhaustive description of the design prob-
lem, SPINS is able to restore any optimization from any iteration
by checking the state of the optimization in the log files. Not only
is this feature invaluable for restarting optimizations that fail
part-way, but it is also invaluable for avoiding re-execution of
transformations when experimenting with transformation
sequences. For instance, to run a different discrete optimization
transformation, SPINS can simply restore the optimization up to
the discretization transformation and then execute the new dis-
crete transformation, without having to re-run any of the previ-
ous continuous transformations.

APPENDIX B: MORE PRACTICAL CONSIDERATIONS

1. FDFD simulation considerations

Optimization of nanophotonic devices, particularly at the
beginning of the optimization, do not require highly accurate simu-
lations. As a result, computation time can be reduced by running
lower quality simulations than is normally done for general electro-
magnetic simulations.

The grid spacing should be maximized as much as possible to
reduce the computational load. Empirically, we have found that
Dx � k=10, where k is the wavelength of light in the material, is suf-
ficient during optimization. Moreover, we often find that in the
absence of highly precise fabrication, using significantly denser
grid spacings to optimize is not particularly helpful because the
fabrication errors result in much larger performance degradation
compared to errors in the simulation. However, this coarse discreti-
zation is only possible because of permittivity averaging.

Permittivity averaging at the boundary between two dielectric
materials is critical to having accurate enough simulations at rela-
tively large grid spacings. In SPINS, the permittivity on the border
of two materials is implemented as the weighted average of the per-
mittivities based on the fraction of the cell that the materials
occupy. Although there are more sophisticated permittivity averag-
ing methods,29 they require simulating with a full permittivity ten-
sor. Note that because of the staggered nature of the Yee grid, for
3D devices, the permittivity values require averaging even if the
pixels are perfectly binary.

In addition to the spacing, the error threshold for the solver
can be set higher than what would normally be desirable in a highly
accurate simulation. In addition, the fields only need to be accurate
where the fields are actually used in the computation, which,
depending on the solver used, can occur at unexpected thresholds.
For example, when using COCG iterative method, the fields in the
PMLs take the longest to converge, but they are also not relevant in
the simulation. Note that if accurate simulations are required (e.g.,
in design of a resonator), it is still possible to optimize early on with
rough simulations and then switch to finer resolution simulation
later on.

Beyond approximating simulations, it is equally important to
ensure using the appropriate matrix solvers to run the simulation.
For instance, empirically, the matrix solver UMFPACK30 performs
substantially faster than the default matrix solver Super-LU31 pro-
vided in the SciPy package for 2D electromagnetic simulations.
For multi-GPU accelerated FDFD simulations, it is important to
pick the correct number of GPUs used per simulation as using the
maximum number of GPUs available per simulation may not
actually be faster (Fig. 11). This is particularly true for multi-
wavelength optimizations where multiple simulations can run
simultaneously. For example, for a system with 2 GPUs and an
optimization requiring 2 EM simulations, it is likely faster to run
each simulation on 1 GPU than to run each simulation on 2 GPUs
one after another.

2. Discretization

As the continuous optimization can be thought of as a com-
plex initialization procedure for discrete optimization, it is

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 7, 011407 (2020); doi: 10.1063/1.5131263 7, 011407-14

Published under license by AIP Publishing

https://scitation.org/journal/are


important that the discretization process does not destroy the pro-
gress made by the continuous optimization. Empirically, the dis-
cretization procedure rarely maintains the performance of the
device and often causes the performance of the device to drop

significantly. Therefore, a good discretization procedure is one
that allows the optimization to eventually recover the performance
encountered in the continuous optimization.

Empirically, two main factors that affect discretization are the
“discreteness” and “feature sizes” of the continuous structure.
Discreteness is the extent to which the structure already has a
binary permittivity. Unsurprisingly, continuous structures that are
mostly discrete tend to perform better than structures that have
intermediate permittivities. Sometimes the optimization process
naturally generates a mostly discrete device. However, this is not
guaranteed, and running optimization for longer does not necessar-
ily generate a fully discrete structure. In other words, there exist
local minima in which permittivity values are not discrete.
Mitigation methods include modifying the continuous optimization
to incorporate a discreteness penalty32 or forcing the continuous
structure to be more discrete.8

Likewise, discretization of a device with large feature size con-
straints tends to be more difficult. Of course, the notion of feature
size is not well-defined in a continuous structure, but as a proxy,
the feature size of the thresholded structure can be considered as
an estimate of the feature size of the continuous structure.
Discretization tends to do poorly if the “feature size” of the continu-
ous structure is much smaller than the feature size of the discrete
structure.

In order to facilitate better discretization, a variety of techni-
ques have been incorporated into the continuous stage optimiza-
tions. In order to address the feature constraint issue, Ref.
8 introduced a cubically interpolated continuous parametrization
so that the “feature size” of the continuous structure is well-
mapped to the feature size of the discrete structure. In order to
mitigate the “discreteness” issue, several continuous optimizations
are run, each with increasing discreteness in the structure. In con-
trast, Ref. 33 uses filtered versions of a direct parametrization to
impose feature size constraints on continuous structures. We refer
the interested reader to the literature in topology optimization for
other options.34,35

3. Crafting objective functions

As discussed previously, the objective function is an impor-
tant manner in which the designer can affect the performance of
an optimization. Section IV already illustrated a common
objective function for maximizing transmission through a given
port. This section goes into more depth and illustrates other com-
mon forms for the objective function in electromagnetic optimi-
zation. We refer the reader to a vast body of inverse design
literature for inspiration on additional forms of objectives
functions.10,13,36–39

a. Phase objective

Transmission and phase can be simultaneously optimized with
an objective of the form f ðbÞ ¼ jb� btj2, where b is the complex
scattering matrix element for an output port and bt ¼ at exp ðihtÞ is
the target matrix element with amplitude at and phase ht. As trans-
mission and phase correspond to two degrees of freedom, this
objective implicitly defines a trade-off between transmission and
phase. For example, if the phase is far from ht but the amplitude is

50 100 150 200 250 300

Simulation Volume (μm3)

Simulation Volume (μm3)

0

10

20

30

40

50

60

70

S
im

ul
at

io
n 

T
im

e 
(m

in
)

FDFD Simulation Time (1 GPU)

COCG
BiCGSTAB
L-GMRES

50 100 150 200 250 300

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

S
im

ul
at

io
n 

T
im

e 
(m

in
)

FDFD Simulation Time (COCG)

1
2
4

(a)

(b)

FIG. 11. FDFD simulations on NVIDIA K80s. The simulation times are recorded in
order to illustrate scaling of the FDFD with simulation volume and with number of
GPUs. (a) FDFD simulation time as a function of simulation volume for different
numerical methods to achieve 10�6 residual error. Note that the required residual
error for optimization varies based on the device and numerical method. (b) FDFD
simulation time for GPU-accelerated FDFD simulations with different numbers of
GPUs. For sufficiently large simulation volumes, the simulation time is inversely
proportional to the number of GPUs used: Increasing the number of GPUs by factor
of N results in a N-fold reduction in simulation time. For small simulation volumes,
the communication overhead becomes significant, and an N-fold increase in GPUs
results in less than a N-fold reduction in simulation time.

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 7, 011407 (2020); doi: 10.1063/1.5131263 7, 011407-15

Published under license by AIP Publishing

https://scitation.org/journal/are


close to at, then the optimization will focus more on adjusting the
phase than changing the amplitude. If both amplitude and phase
are far from the targets, then depending on the actual values, the
optimization will either favor adjusting amplitude or adjusting
phase. Sometimes this is problematic if at is set to unrealistic values
(e.g., unity transmission for a device with too small of a design
region) as the optimization may keep trying to optimize solely for
amplitude while neglecting phase.

b. Aggregating sub-objectives

As illustrated in Sec. IV, electromagnetic design problems are
often multi-objective optimization problems and consist of many
different sub-objectives. However, these sub-objectives must be
combined into a single total objective function, the construction of
which implicitly defines the trade-off between the sub-objectives.
Therefore, depending on the desired performance characteristics,
one may want to modify how the sub-objectives are combined.

Optimization theory provides a systematic way to trace out
the trade-off curve by using an objective that sums the sub-
objectives together with variable weights. By setting the weights
accordingly, the entire trade-off curve can be determined.40

Unfortunately, it is often difficult to choose the appropriate
weights a priori and thus determining the weights is often a matter
of trial-and-error.

In many cases, electromagnetic designers want to give roughly
equal weight to the sub-objectives. In these cases, an objective of the
form f ðpÞ ¼ maxfiðpÞ can be used as an alternative. This forces the
optimization to improve the worst-performing metric. Sometimes
this optimization works better by using a smooth approximation of
the maximum function (e.g., using log-sum-exp or an objective of
the form f ðpÞ ¼

P
i fiðpÞ

q for some integer power q).

c. Broadband objective

Devices can be made more broadband by adding sub-
objectives at nearby wavelengths. For example, suppose the objec-
tive is given by fkðpÞ at wavelength k, then the corresponding
broadband objective would be f ðpÞ ¼

Pn
i¼�n fkþiDðpÞ. Broadband

performance across a given bandwidth can be achieved by picking n
and D judiciously. Usually, this hinges at choosing an appropriate
value for D. If it is too big, then the spectra may have undesired
behavior in between the simulated wavelengths, undermining the
broadband performance objective. If it is too small, then n is forced
to be large to cover a larger range, and consequently the optimiza-
tion takes more time. It is recommended to run some quick contin-
uous optimizations (see Sec. V B) to determine what an appropriate
value of D should be.

4. Selecting an optimizer

The optimizer is responsible for accepting an optimization
problem and minimizing the objective function with respect to any
constraints. There are a wide variety of optimizations methods that
can be used, and we refer the reader to Ref. 41 for details.
Optimization methods can be broadly classified based on whether
they employ the gradient to optimize a device. Gradient-free meth-
ods, including particle swarm optimization, genetic optimization,

Nelder-Mead, and Bayesian optimization, try to sample the
objective function at cleverly chosen points based on previous
observations. Nevertheless, they typically require many function
evaluations as the dimensions of the design space increases and are
typically ineffective in high dimensional design spaces in which
SPINS is designed to operate.

For unconstrained optimization, gradient-based optimization
methods can be broadly classified as first-order, second-order, and
quasi-Newton methods depending on how gradient information is
used. In first-order methods, only the gradient (as opposed to the
Hessian) is used. These include vanilla gradient descent as well as
many methods employed in machine learning, such as Adagrad,
ADAM, and RMSProp. First-order methods generally take longer
to converge as compared to higher-order methods and require
setting an appropriate scaling of the step size parameter to achieve
convergence, hence requiring hyperparameter tuning to use. In con-
trast to ML loss functions, evaluating EM objective functions is
computationally expensive and should be avoided.

On the other hand, second-order methods, such as Newton’s
method, that take into account the Hessian of the objective function
would be ideal. Because second-order methods have information
about the local curvature, they generally converge faster than first-
order methods. Unfortunately, it is computationally intractable to
actually compute the Hessian for EM optimizations. Instead, we
rely on quasi-Newton methods that approximate the Hessian by
storing previous gradients. In practice, we default to the SciPy
implementation of L-BFGS-B, which empirically works well relative
to first-order methods and other optimization methods imple-
mented by SciPy. Additionally, it is empirically observed that
L-BFGS-B tends to create structures that are more discrete in the
continuous stage optimization, leading to better discretization.

Nevertheless, the best optimization method is yet another
knob of control that the designer can use to improve designs. For
cavity designs, for instance, it is observed that using a combination
of MMA and L-BFGS-B works better. Since L-BFGS-B cannot han-
dle arbitrary constraints, SLSQP was used in grating optimization.
To date, interior point optimization methods have not been applied
to inverse design, and there is the possibility that they can outper-
form L-BFGS-B.

APPENDIX C: MATHEMATICAL DETAILS

A general electromagnetic design problem can be expressed in
the form

min
p

fobjðE1;E2;…;En; �1; �2;…; �n; pÞ

subject to giðpÞ ¼ 0 i ¼ 1;…;m;

hiðpÞ � 0 i ¼ 1;…; q;

(C1)

where Ei is the electric field corresponding to the structure �i
(which depends on p). Note that there is significant flexibility in
what �i and Ei each correspond to. Ei could represent frequency-
domain fields produced by FDFD or time-domain fields produced
by FDTD. Each �i can correspond to the permittivity at a different
wavelength, temperature, or carrier concentration (e.g., for active
device design). They could also correspond to enlarged and

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 7, 011407 (2020); doi: 10.1063/1.5131263 7, 011407-16

Published under license by AIP Publishing

https://scitation.org/journal/are


shrunken versions of the structure to model fabrication errors. The
giðpÞ and hiðpÞ terms capture any desired constraints on p, particu-
larly fabrication constraints.

As discussed in more detail in Appendix A 1, it is often conve-
nient to define � through selection matrices Si,

�i ¼ �0;i þ SihiðpÞ: (C2)

The function hi is known as the parametrization, and therefore p is
the parametrization vector. Since the output dimension of a param-
etrization depends on the shape of the selection matrix Si, paramet-
rizations are often designed to work for a particular type of
selection matrix.

To perform gradient-based optimization, the gradient dfobj=dp
must be computed. Caution must be taken if Ei or �i is complex-
valued. Since fobj is necessarily non-holomorphic (it maps a complex
value to a real value), the complex derivative does not exist. In general,

dfobj
dp
¼
@fobj
@p
þ
X
i

�
@fobj
@Ei

dEi

dp
þ
@fobj
@E�i

dE�i
dp
þ
@fobj
@�i

d�i
dp

(C3)

þ @fobj
@��i

d��i
dp

�
; (C4)

where the partial derivatives are defined as Wirtinger derivatives.
For a function f(z) where z ¼ x þ iy, the Wirtinger derivatives are
defined as

@f
@z
¼ 1

2
@f
@x
� i

@f
@y

� �
; (C5)

@f
@z�
¼ 1

2
@f
@x
þ i

@f
@y

� �
: (C6)

If f(z) is holomorphic [e.g., f ðzÞ ¼ z2], the Wirtinger derivative
@f =@z is equivalent to the complex derivative df/dz. However, the
Wirtinger derivative is still well-defined even if f(z) is non-
holomorphic [e.g., f ðzÞ ¼ jzj2]. If f(z) is real, then @f =@z
¼ ð@f =@z�Þ�. Since fobj is real-valued, Eq. (C3) simplifies to

dfobj
dp
¼ @fobj

@p
þ 2Re

X
i

@fobj
@Ei

dEi

dp
þ @fobj
@�i

d�i
dp

� �" #
: (C7)

The computation for @fobj=@p; @fobj=@Ei, and @fobj=@�i depends on
the form of the objective. The structure gradient d�i=dp is
straightforward,

d�i
dp
¼ d�i

dhi

dhi
dp

(C8)

¼ Si
dhi
dp

: (C9)

To derive the simulation gradient dEi=dp, we must differenti-
ate through the electromagnetic simulation. We will derive the gra-
dient for FDFD, but similar derivations follow for other
computational methods. The FDFD equation is given by

ðD� x2diagð�ÞÞE ¼ �ixJ; (C10)

where D is the discretized version of the r� 1
lr� operator (per-

meability is assumed to be constant). Differentiating by through by
� and rearranging, we have

ðD� x2diagð�ÞÞ dE
d�
¼ x2diagðEÞ: (C11)

Therefore,

dEi

dp
¼ dEi

d�i

d�i
dp

(C12)

¼ ðD� x2
i diagð�iÞÞ

�1x2
i diagðEiÞ

d�i
dp

: (C13)

Note, however, that computing dEi=dp is computationally expen-
sive as this requires a number of electromagnetic simulations equal
to the number of elements in p. Instead, to evaluate the gradient, we
rely on backpropagation to reduce the number of simulations to
one. During backpropagation, @fobj=@Ei is computed first and then
the quantity ð@fobj=@EiÞðdEi=dpÞ is evaluated as

@fobj
@Ei

dEi

dp
¼ @fobj
@Ei
ðD� x2

i diagð�iÞÞ
�1x2

i diagðEiÞ
d�i
dp

(C14)

¼ ðD� x2
i diagð�iÞÞ

�T@fobj
@Ei

T
 !T

x2
i diagðEiÞ

d�i
dp

: (C15)

Consequently, differentiating through FDFD involves an electro-
magnetic simulation with ð@fobj=@EiÞT=ð�ixiÞ as the source.
Similar results exist for other simulation methods.27,39,42

APPENDIX D: LOCAL MINIMA ANALYSIS DETAILS

In order to thoroughly explore the space of possible local min-
ima, three different initialization methods were used to generate the
structures: blurred random noise, Perlin noise, and Gabor noise.
The use of different initialization methods is to ensure that most
relevant types of local minima are captured in the process. For the
blurred random noise structures, the parametrization values are
generated uniformly at random and then filtered with a Gaussian
kernel of random width. A randomly generated zoom and rotation
was then applied. Perlin and Gabor noise are common noise types
used in procedural computer graphics. Perlin noise can generate
noise with different feature sizes and turbulence, whereas Gabor
noise can generate noise with different frequency components. To
ensure that the starting conditions had varied amplitudes and aver-
age permittivity values, the Perlin and Gabor noise structures were
post-processed with a random scaling and random offset. No corre-
lation was observed between the initialization method and the final
performance, suggesting that the choice of random initialization
may not be particularly significant.

Because the structures live in a high-dimensional space, an
embedding method, which maps vectors from a high-dimensional
space to a low-dimensional space, must be used to visualize the
space of a device. Principal component analysis (PCA) is perhaps
the most well-known embedding methodology, but, by virtue of its
linearity, may not necessarily be the most effective way to visualize
the space if it is nonlinear. In contrast, spectral embedding is a non-
linear embedding that derives from spectral decomposition of undi-
rected graphs and is commonly used to separate a graph into
clusters based on the connectivity. For example, if a graph has two
connected components, then the embedding vectors will identify

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 7, 011407 (2020); doi: 10.1063/1.5131263 7, 011407-17

Published under license by AIP Publishing

https://scitation.org/journal/are


which nodes belong to which component. The graph used for spec-
tral embedding is one formed by connecting each structure with the
n nearest neighbors where the distance between two structures is
defined using the 2-norm. In this analysis, the spectral embedding
was performed by scikit-learn43 with n¼ 10 nearest neighbors and
default values for the other parameters.

In the main text, we presented the local minima encountered
after running the discrete optimization. By repeating the same anal-
ysis but for the continuous permittivity structures, we see that the
“discrete local minima” is actually determined by the continuous
minima (Fig. 12). The same exact conclusions drawn from the dis-
crete structure analysis can be drawn for the continuous structure
analysis. This is not too surprising as the discrete structure typically
closely resembles the continuous structure.

REFERENCES
1C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S.
Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F.
Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K.
Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip micro-
processor that communicates directly using light,” Nature 528, 534 (2015).

2B. Kress and T. Starner, “A review of head-mounted displays (hmd) technolo-
gies and applications for consumer electronics,” in Photonic Applications for
Aerospace, Commercial, and Harsh Environments IV, Vol. 8720 (International
Society for Optics and Photonics, 2013) p. 87200A.

3Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X.
Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with
coherent nanophotonic circuits,” Nat. Photonics 11, 441 (2017).

4S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez,
“Inverse design in nanophotonics,” Nat. Photonics 12, 659 (2018).

5“Spins-b,” https://github.com/stanfordnqp/spins-b (2019).
6“Inverse design software for nanophotonic structures - spins,” (2018), disclo-
sure S18-012.

7C. Dory, D. Vercruysse, K. Y. Yang, N. V. Sapra, A. E. Rugar, S. Sun, D. M. Lukin,
A. Y. Piggott, J. L. Zhang, M. Radulaski, K. G. Lagoudakis, L. Su, and J. Vuckovic,
“Inverse-designed diamond photonics,” Nat. Commun. 10, 3309 (2019).

8D. Vercruysse, N. V. Sapra, L. Su, R. Trivedi, and J. Vučković, “Analytical level
set fabrication constraints for inverse design,” Sci. Rep.-UK 9, 8999 (2019).

9K. Y. Yang, J. Skarda, M. Cotrufo, A. Dutt, G. H. Ahn, D. Vercruysse, S. Fan,
A. Al�u, and J. Vučković, “Inverse-designed photonic circuits for fully passive,
bias-free kerr-based nonreciprocal transmission and routing,” preprint
arXiv:1905.04818 (2019).

10N. V. Sapra, K. Y. Yang, D. Vercruysse, K. J. Leedle, D. S. Black, R. J. England,
L. Su, R. Trivedi, Y. Miao, O. Solgaard, R. L. Byer, and J. Vučković, “On-chip
integrated laser-driven particle accelerator,” Science 367(6473), 79–83 (2020).

11N. V. Sapra, D. Vercruysse, L. Su, K. Y. Yang, J. Skarda, A. Y. Piggott, and J.
Vučković, “Inverse design and demonstration of broadband grating couplers,”
IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).

12L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković,
“Fully-automated optimization of grating couplers,” Opt. Express 26,
4023–4034 (2018).

13T. W. Hughes, M. Minkov, I. A. Williamson, and S. Fan, “Adjoint method and
inverse design for nonlinear nanophotonic devices,” ACS Photonics 5,
4781–4787 (2018).

14F. Wang, J. S. Jensen, and O. Sigmund, “Robust topology optimization of photonic
crystal waveguides with tailored dispersion properties,” JOSA B 28, 387–397 (2011).

15M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Man�e, R.
Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I.
Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Vi�egas, O.
Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015),
software available from tensorflow.org.

16D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature 323, 533–536 (1986).

17U. Von Luxburg, “A tutorial on spectral clustering,” Stat. Comput. 17, 395–416
(2007).

18G. Angeris, J. Vuckovic, and S. P. Boyd, “Computational bounds for photonic
inverse design,” ACS Photonics 6(5), 1232–1239 (2019).

19H. Shim, L. Fan, S. G. Johnson, and O. D. Miller, “Fundamental limits to near-
field optical response over any bandwidth,” Phys. Rev. X 9, 011043 (2019).

20A. Michaels and E. Yablonovitch, “Leveraging continuous material averaging
for inverse electromagnetic design,” Opt. Express 26, 31717–31737 (2018).

21J. Petykiewicz, “Active nanophotonics: Inverse design and strained germanium
light emitters,” Ph.D. thesis, Stanford University (2016).

22P.-I. Schneider, X. G. Santiago, V. Soltwisch, M. Hammerschmidt, S. Burger,
and C. Rockstuhl, “Benchmarking five global optimization approaches for
nano-optical shape optimization and parameter reconstruction,” ACS
Photonics 6(11), 2726–2733 (2019).

23W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition
for frequency-domain Maxwell’s equations solvers,” J. Comput. Phys. 231,
3406–3431 (2012).

24W. Shin and S. Fan, “Simulation of phenomena characterized by partial differ-
ential equations,” U.S. patent US20140207426A1 (24 July 2014).

25H. A. van der Vorst and J. B. Melissen, “A petrov-galerkin type method for
solving axk¼ b, where a is symmetric complex,” IEEE Trans. Magn. 26,
706–708 (1990).

(a)

(b)

–0.4

–0.4

–0.2

0.0

0.2

0.4

0.6

–0.2 0.0 0.2 0.4

–0.4

–0.4

–0.2

0.0

0.2

0.4

0.6

–0.2 0.0 0.2 0.4

Transmission

(0.9,1.0)

Mean Pixel

0 1

(0.85,0.9)
(0.8,0.85)
(0.75,0.8)
(0.0,0.75)

u1

u1

u 2
u 2

FIG. 12. Spectral embedding of the optimized continuous structures from Fig. 7.
These plots are identical to those in Fig. 8, but for the optimized continuous struc-
tures rather than the optimized discrete structures. (a) Spectral embedding colored
binned by the transmission values at 1550 nm. u1 and u2 correspond to the values
of the first and second embedding vector. (b) Same spectral embedding as in (a)
but colored by the mean pixel value of the initial condition. The similarity between
(a) and (b) and Figs. 8(a) and 8(b) demonstrates that the conclusions drawn in
Sec. VA apply to the continuous stage as well.

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 7, 011407 (2020); doi: 10.1063/1.5131263 7, 011407-18

Published under license by AIP Publishing

https://doi.org/10.1038/nature16454
https://doi.org/10.1038/nphoton.2017.93
https://doi.org/10.1038/s41566-018-0246-9
https://github.com/stanfordnqp/spins-b
https://doi.org/10.1038/s41467-019-11343-1
https://doi.org/10.1038/s41598-019-45026-0
http://arxiv.org/abs/1905.04818
https://doi.org/10.1126/science.aay5734
https://doi.org/10.1109/JSTQE.2019.2891402
https://doi.org/10.1364/OE.26.004023
https://doi.org/10.1021/acsphotonics.8b01522
https://doi.org/10.1364/JOSAB.28.000387
https://www.tensorflow.org
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1021/acsphotonics.9b00154
https://doi.org/10.1103/PhysRevX.9.011043
https://doi.org/10.1364/OE.26.031717
https://doi.org/10.1021/acsphotonics.9b00706
https://doi.org/10.1021/acsphotonics.9b00706
https://doi.org/10.1016/j.jcp.2012.01.013
https://doi.org/10.1109/20.106415
https://scitation.org/journal/are


26Y. A. Erlangga, “Advances in iterative methods and preconditioners for the
Helmholtz equation,” Archives Comput. Methods Eng. 15, 37–66 (2008).

27H.-B. Lee and T. Itoh, “A systematic optimum design of waveguide-to-
microstrip transition,” IEEE Trans. Microwave Theory Tech. 45, 803–809
(1997).

28A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z.
Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. K€opf, E. Yang, Z. DeVito, M.
Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Rang, J. Bai, and S. Chintala,
“PyTorch: An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32 (Curran Associates,
2019), pp. 8024–8035.

29A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J.
Joannopoulos, S. G. Johnson, and, and G. Burr, “Improving accuracy by sub-
pixel smoothing in fdtd,” in Tuning the Optic Response of Photonic Bandgap
Structures III, Vol. 6322 (International Society for Optics and Photonics, 2006)
p. 63220G.

30T. A. Davis, “Algorithm 832: Umfpack v4. 3—an unsymmetric-pattern
multifrontal method,” ACM Trans. Math. Software (TOMS) 30, 196–199
(2004).

31X. S. Li, “An overview of superlu: Algorithms, implementation, and user inter-
face,” ACM Trans. Math. Software (TOMS) 31, 302–325 (2005).

32L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vuckovic, “Inverse
design and demonstration of a compact on-chip narrowband three-channel
wavelength demultiplexer,” ACS Photonics 5, 301–305 (2018).

33M. Zhou, B. S. Lazarov, F. Wang, and O. Sigmund, “Minimum length scale in
topology optimization by geometric constraints,” Comput. Methods Appl.
Mech. Eng. 293, 266–282 (2015).

34O. Sigmund, “Manufacturing tolerant topology optimization,” Acta Mechanica
Sin. 25, 227–239 (2009).

35F. Wang, B. S. Lazarov, and O. Sigmund, “On projection methods, convergence
and robust formulations in topology optimization,” Struct. Multidisciplinary
Optim. 43, 767–784 (2011).

36X. Liang and S. G. Johnson, “Formulation for scalable optimization of micro-
cavities via the frequency-averaged local density of states,” Opt. Express 21,
30812–30841 (2013).

37J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21,
13351–13367 (2013).

38Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-
enhanced second-harmonic generation via nonlinear-overlap optimization,”
Optica 3, 233–238 (2016).

39D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunc-
tional metagratings based on freeform multimode geometries,” Nano Letters
17, 3752–3757 (2017).

40S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University
Press, 2004).

41J. Nocedal and S. Wright, Numerical Optimization (Springer Science &
Business Media, 2006).

42N. K. Nikolova, H. W. Tam, and M. H. Bakr, “Sensitivity analysis with the
FDTD method on structured grids,” IEEE Trans. Microwave Theory Tech. 52,
1207–1216 (2004).

43F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 7, 011407 (2020); doi: 10.1063/1.5131263 7, 011407-19

Published under license by AIP Publishing

https://doi.org/10.1007/s11831-007-9013-7
https://doi.org/10.1109/22.575603
https://doi.org/10.1145/992200.992206
https://doi.org/10.1145/1089014.1089017
https://doi.org/10.1021/acsphotonics.7b00987
https://doi.org/10.1016/j.cma.2015.05.003
https://doi.org/10.1016/j.cma.2015.05.003
https://doi.org/10.1007/s10409-009-0240-z
https://doi.org/10.1007/s10409-009-0240-z
https://doi.org/10.1007/s00158-010-0602-y
https://doi.org/10.1007/s00158-010-0602-y
https://doi.org/10.1364/OE.21.030812
https://doi.org/10.1364/OE.21.013351
https://doi.org/10.1364/OPTICA.3.000233
https://doi.org/10.1021/acs.nanolett.7b01082
https://doi.org/10.1109/TMTT.2004.825710
https://scitation.org/journal/are

